Improved Annular Mode Variability in a Global Atmospheric General Circulation Model with 16-km Horizontal Resolution

Erool Palipane¹ Jian Lu¹,² Gang Chen³ James L. Kinter III¹,²

¹Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA
²Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, Calverton, MD
³Department of Atmospheric and Earth Sciences, Cornell University, Ithaca, NY

Corresponding author:
Jian Lu
Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Rd, Suite 302, Calverton, MD, 20705-3106, USA E-mail: jianlu@cola.iges.org
Abstract

In an attempt to assess the benefit of resolving the sub-synoptic to mesoscale processes, the spatial and temporal characteristics of the Annular Modes (AMs), in particular those related to the troposphere-stratosphere interaction, are evaluated for moderate- and high-horizontal resolution simulations with the ECMWF IFS global atmospheric general circulation model (AGCM), in comparison with the reanalysis. Notably, the performance with the high horizontal resolution (T1279 truncation, ~16km) version of the model is relatively more skillful than the moderate resolution (T159 truncation, ~125km) on most metrics examined, including the variance of the AMs at different seasons of the year, the intrinsic e-folding time scales of the AMs, and the downward influence from the stratosphere to troposphere in the AMs. Moreover, the summer SAM is more persistent in the high-resolution and projected to respond in a greater magnitude to climate change forcing than the moderate resolution.
1. Introduction

The Northern and Southern Annular Modes (NAM and SAM) are the dominant patterns of the intrinsic variability of the extratropical circulation in the Northern (NH) and Southern Hemispheres (SH), respectively [e.g., Thompson and Wallace, 2000]. The annular modes extend from the surface through the stratosphere in both hemispheres, and are characterized by meridional vacillations in the geopotential height field between the polar regions and surrounding latitudes. The annular mode (AM) also describes a pattern of coupling between the stratosphere and troposphere, characterizing the connection between the position of the mid-latitude, eddy-driven jet in the troposphere and the strength of the polar night jet in the stratosphere. Until the 1990s, it was generally believed that the coupling between stratospheric and tropospheric annular mode was in one direction, from the troposphere to the stratosphere. Baldwin and Dunkerton (1999, 2001) first demonstrated that circulation anomalies originating in the stratosphere can propagate downward and influence the tropospheric circulation for up to two months. Thus, the phase of the AM in the stratosphere can be used as a predictor for variations in the troposphere. The tropospheric annular modes tend to be more persistent during the active season of the stratosphere, when the longer time scales of the lower stratosphere may impact the tropospheric persistence. Baldwin et al. (2003) quantified the persistence of the AM variability in terms of the e-folding timescale of its autocorrelation function. Recent observational evidence suggests that the stratospheric AM index can be a better predictor for the tropospheric variability than the tropospheric one during certain seasons of the year (e.g., SH spring) [Gerber et al., 2010].
However, most climate models, including those in the Coupled Model Intercomparison Project, phase-3 (CMIP3) and the Chemistry-Climate Model Validation project phases 1 and 2 (CCMVal-1 and 2), suffer from biases of (i) overestimating the time scales of the annular modes [Gerber et al., 2010; Baldwin et al., 2010] and (ii) late breakdown of the polar vortex and hence delay in the peak phase of the AM variances and time scales in both hemispheres. In fact, no climate model previously examined showed skill in capturing the stratospheric predictability for the tropospheric SAM during austral spring. Gerber et al. (2008) found that for a given climate model, higher horizontal resolution tends to alleviate the bias of the over-persistence, and they posited that the lack of sufficient horizontal resolution might be the culprit for the overestimation of the persistence of the AMs in both hemispheres.

An important aspect of the recent and future climate change is the poleward shift of the westerly jet (and correspondingly, the midlatitude storm track), a change of circulation concomitant with the positive phase of the annular mode [e.g., Miller et al., 2006; Son et al., 2008]. To the extent that the jet vacillation in latitudes may behave as a fluctuation-dissipation system (Leith, 1975), the magnitude of a forced annular mode-like response may scale linearly with the timescale of the intrinsic annular mode variability [Gerber, 2008; Ring and Plumb, 2008; Chen and Plumb, 2009]. Therefore in order to accurately predict future climate change, a general circulation model must correctly simulate the AM time scales and the associated dynamical feedbacks, including that of the downward influence from the stratosphere on the tropospheric time scales.

In a recent multi-institutional, international project—Project Athena (Kinter et al., 2013) — the ECMWF Integrated Forecast System (IFS, a weather prediction system) was
employed to simulate global climate for multiple decades with multiple horizontal resolutions (ranging from T159, T511, T1279, and T2047\(^1\)), allowing a comparison of climate simulations with minimal differences in model configuration aside from horizontal resolution. Studies of the Athena project have already shown that increasing the model resolution improves the representation of tropical cyclones (Manganello, 2012), extra-tropical cyclones and blocking (Jung et al. 2011), and the diurnal cycle of precipitation (Dirmeyer et al., 2011). In view of the improvements above and the fact that the mean wind speed in the T1279 resolution has better agreement with the observation relative to the T159 simulation (not shown), we set out to further assess how the benefit of the very high horizontal resolution would be manifested in the time scales and the potential predictability of the AMs. Since future climate simulations were also conducted in the form of time-slice experiments, the resolution with better fidelity in representing the key characteristics of the internal variability of the AMs may be assigned higher confidence in its projection of the AMs under a warmed climate.

In this letter, we will first introduce the data and methods used. The analysis will be centered around examining the basic temporal and spatial structure of the AM variability, its variance in time and space, and how the representation of the AMs in the stratosphere may impact the seasonality in the tropospheric AM variability. Further, we will show that the enhanced SAM time scales during austral summer seems to be manifested in the climate change simulation of the SH westerly jet shift. Lastly, we will summarize the findings of this study and speculate on the possible cause for the improvements in the high resolution simulations of the IFS.

\(^1\) IFS resolutions are labeled by the triangular truncation wave number of the spectral treatment of the prognostic variables. T159, T511, T1279 and T2047 correspond to 125 km, 39 km, 16 km and 10 km grid spacing, respectively.
2. Data and Methods

Two types of simulations---AMIP-type and time-slice experiments---are conducted with the IFS, each running in both moderate (T159) resolution and high (T1279) resolution. The IFS has 91 vertical hybrid levels (top full level at 0.01 hPa), thus should be categorized as a high-top AGCM. For the AMIP-type experiments, 47 continuous years were integrated from January 1961 to December 2007 with the observed history of SST and sea ice fields (similar to the ones carried out in the Atmospheric Model Intercomparison Project, Gates 1992) and fixed climatological radiative forcings. The AMIP integrations serve as the control experiment for the time slice experiment. The time-slice integrations are also 47 years long covering the period 2071-2117, but with the observed SST and sea ice conditions perturbed with monthly anomalies computed as the difference between 2065-2075 and 1965-1975 in the A1B scenario and historical simulations respectively using the Community Climate System Model (Collins et al. 2006). The concentrations of greenhouse gases follow scenario A1B until year 2100; thereafter concentrations are held constant at their 2100 values. Thus, contrasting the time-slice against the AMIP simulations yields the climate change response of year 2070 relative to 1970 under the A1B scenario.

In order to crosscheck the results of the AMIP simulations, we also make use of the 13-month hindcast integrations started on 1 November of each of the years 1961-2007 for T159 and T1279. For each of the 47 integrations, the atmosphere is initialized with the ERA-40 (1961-1989) or ERA-Interim (1990-2007) conditions interpolated spatially.
to the resolution of the model. This set of simulations will be referred to as hindcast simulations.

The primary data sets for evaluating the model performance of the AMs include the 40-year reanalysis of European Centre for Medium-Range Forecast (Uppala et al., 2005) and the NCEP-DOE reanalysis-2 (Kanamitsu et al., 2002). Unless noted explicitly, most of the comparison is against the estimation based on the ERA-40 reanalysis. The primary variable for the AM analysis is the 6-hourly geopotential height data. To facilitate a direct comparison with the prior studies [e.g., Gerber et al. 2010], the 6-hourly data are first converted to the daily mean before the analysis. For model data output, only selected pressure levels are available, thus only 13 levels up to 10 hPa are used. The same levels from the ERA-40 reanalysis are employed for validation.

The method for the AM calculation is similar to that of Baldwin et al. [2010] and Baldwin and Thompson [2009]. These studies defined the AMs separately for each pressure level as the leading empirical orthogonal function (EOF) of the daily, deseasonalized, latitude-weighted, zonally-averaged geopotential height anomalies poleward of 20° latitude in each hemisphere. Modifications were further made to this method following Gerber et al. [2010]: (i) the time series of the geopotential height anomalies were all detrended; (ii) to prevent global geopotential height fluctuations, which are unrelated to the zonal momentum structure, from aliasing onto the annular modes, the global mean geopotential of each day at each pressure level was subtracted. The autocorrelation function of the AM index and its e-folding time scale were then computed following Baldwin et al. [2003] with a Gaussian weighting (with a full width at half maximum of 60 days) applied to the daily time series. The time scale was estimated
as the least squares fit of an exponential curve to the autocorrelation function cut off at a 30-day lag.

3. Results

3.1. The spatial structure of the annular modes in the IFS AMIP runs

Baldwin and Thompson [2009] and Gerber et al. [2010] demonstrated that the annular mode accounts for over half the variance of the zonal flow at most levels in both hemispheres and provides an ideal multilevel metric for assessing the interaction between the troposphere and stratosphere. Observations show that there is an asymmetry between the two hemispheres in the fraction of variance of the tropospheric zonal wind explained by the annular mode: the value in the SH is higher than in the NH. This asymmetry is captured reasonably well by both resolutions (see Fig. A1). However, the IFS simulations still suffer the overestimation of the variance as most climate models do, although somewhat less so in T1279. The overestimation of the NAM variance is a bias commonly found in climate models [e.g., Delworth, 2006]. Increased resolution has some negative effects in addition to the benefits. For example, the SAM in T1279 accounts for too much variance in the stratosphere and the minimum variance near the tropopause is too high in altitude compared to both ERA-40 and the T159 simulation (Fig. A1b).

The IFS shows considerable realism in simulating the meridional structure of the AM in both hemispheres. In the troposphere, the geopotential height pattern associated with the AM is characterized by a dipole, with the nodal point indicating the peak of the anomalous westerly wind. At 100 hPa and above, the pattern elongates toward the equator, implying the associated geostrophic wind to be more monopolar in character,
reflecting variation in the strength and size of the stratospheric polar vortex [see Fig. 4 in Gerber et al. 2010]. In the CMIP3 models, the nodal line and the peak equatorward of it are both displaced equatorward compared to their observational counterparts. Here, in both high and moderate resolution simulations, the meridional structure of the geopotential height of the AM is rather faithfully simulated with only \(\sim 1^\circ \) latitude offset at most in the nodal latitude compared to the ERA40 (not shown). The semiannual cycle in the position of the surface westerly wind is well captured by the IFS, but with somewhat larger amplitude (see Figs. 4a and 4b).

3.2 Temporal Structure of the AMs in the AMIP runs

The seasonal and vertical structure of the annular mode variance is shown in Fig. 1. The maximum occurs in the boreal winter for the NH and in the austral spring for the SH, a difference likely due to the more active stationary wave forcing and hence more active stratospheric sudden warming events in the NH and the dominance of the variability occurring during the time of vortex breakdown in the SH. The slant in isolines of the variance in the stratosphere is reasonably simulated by both resolutions, indicating descending AM variability. The T159 simulation misplaces the peak of the tropospheric NAM variance at late February, while the observed peak takes place in late January. The \(\sim 1 \) month delay in the T159 case is much alleviated with high resolution simulation and the improvement between late February and early March in the overestimation is significant (at 10% confidence level) based on F test. In the SH, the peak of the SAM variance in the stratosphere tends to occur about 1.5 months (1 month) too early in the T159 (T1279) simulation and the rate at which the variability descends is too slow.
compared to ERA40. The early occurrence of the peak variance indicates that the final warming might occur too early in the model. Indeed, an inspection of the seasonal evolution of the polar cap temperature supports this speculation. The improvement due to high resolution is more visible in the SH troposphere, the T1279 AMIP simulation captures the November-December maximum, which is largely missing in the T159 simulation as in most CCMVal-2 models [Gerber et al. 2010].

Figure 2 shows the AM time scales as a function of altitude and season. The AM time scales in the stratosphere are consistently better in the IFS simulations than typical climate models, which show a tendency toward overestimation [Gerber et al. 2010]. Similar to the typical climate models, the timing of the maximum persistence of the tropospheric NAM in T159 is delayed by a month or so compared to the reanalysis; this bias is somewhat ameliorated in the T1279 simulation. It is difficult to judge whether this improvement is the result of the better representation of the downward influence of the NAM from the stratosphere or the cross-scale interactions in the troposphere, since both the stratospheric and tropospheric processes can shape the seasonality of the AM time scales [Simpson et al. 2011]. For the SH, the seasonality of SAM time scale is also improved in the high-resolution simulation. In particular, the overestimation of the tropospheric timescales during the austral winter/spring in the moderate resolution, a feature likely related to the concomitant overestimation of the variance of the SAM in the troposphere, is much improved with the implementation of the high resolution. To get a sense about the significance of the change of the AM time scale due to the high resolution, we follow Gerber et al. (2008) to estimate the uncertainty of the time scale resulted from the internal variability of the autocorrelation function of the AM index,
assuming that the AM index can be modeled as an AR(1) process. Hatching in Figs. 2cf highlights the areas where the value of the time scale in T1279 is outside the one standard deviation uncertainty range estimated from the T159 simulation. Note that with the available data sets a rigorous test for the significance of the change of AM time scale remains elusive.

The same analysis was also performed with the hindcast simulations for T159 and T1279. The results for the variance and time scale analysis are shown in Figs. A2 and A3, respectively. As in the AMIP run, T159 tends to simulate too late a peak in the annual evolution of the NAM variance and as a result places the maximum persistence of the tropospheric NAM in March. Similar delay in the peaking is also apparent in the tropospheric SAM variability in T159 simulation. Although the improvement due to the high resolution is not as evident as the AMIP simulations, the tendency towards the alleviation of the bias of the delayed peaking is clear. We speculate that the phase bias in T159 hindcast simulation is the result of the overestimation of the influence of the stratospheric final warming on the troposphere and the underestimation of that of the sudden warming. Extra caution should be used in interpreting the time scale analysis of the hindcast runs, since the time series for each year is truncated at November 30, leading to an artificial discontinuity and a dip in the persistence between November and December.

To elucidate the connection between the biases in the lower stratosphere and the troposphere, we estimate the fraction of variance of the 30-day averaged 850hPa index that can be explained by the antecedent daily index. This quantity, as a function of height and season, is the square of the correlation between the AM index on a particular day
(day 0) and the 31-day mean AM index (i.e., days 10-40) at 850 hPa with the former leading the latter by 10 days. The result (Figure 3) suggests that the lower stratosphere sometimes can be a better predictor for the near surface annular mode index than the near surface annular mode itself. This can be seen by the higher values of fraction of variance near the lower stratosphere at certain times during the year, for example, between November and January in the NH and between September to October in the SH. However, this stratosphere-originating predictability is hard to capture for models. In the NH, the IFS model tends to delay the season of stratosphere-to-troposphere connection by two months compared to the reanalysis, seeming to echo the delayed maximum variance and persistence of the NAM index in the stratosphere. The lag correlation analysis of the T1279 simulation seems to capture a local maximum between November and December, but is much weaker and 1 month too early than its reanalysis counterpart. Thus, in the NH, it appears that too much of the modeled potential predictability is associated with the final warming of the stratospheric vortex, as implied by the delayed maximum persistence of the NAM in both stratosphere and troposphere.

Perhaps the most notable improvement due to the high resolution is in the predictability relationship between the September-October stratospheric SAM index and the near surface SAM anomalies (compare Figs. 3e and 4f). This, in conjunction with the ERA40 result (Fig. 3d), suggests that the feature of the accentuated potential predictability during austral spring is real and not an artifact of instrumental changes or data assimilation algorithms. The change of the lagged covariance due to the T1279 resolution is further tested using a Fisher-Z test, and the levels where and times of the year when the change is significant at the 10% confidence level are highlighted with
hatching in Fig. 3f. The T1279 simulation also captures the magnitude of the potential predictability near the tropopause level better, suggesting that at T1279 resolution the IFS can have sizable potential skill in predicting the monthly mean tropospheric SAM index from its tropopause index with a lead of 10 days. Unfortunately, similar potential predictability remains elusive with the NAM, regardless of which resolution is used (two other resolutions, T511 and T2047, were also evaluated, but not shown).

3.3 Projecting the SH westerly shift

In view of the modest but consistent improvements in the variance, timescale and the downward connection of the SAM in the T1279 simulation relative to the T159 simulation, it may be more desirable to use the former for evaluating the future climate of the Southern Hemispheric westerly jet. Moreover, if the persistence of the tropospheric SAM in summer is augmented by the better-captured downward influence from the stratosphere in the T1279 simulation (Figs. 1f and 2f), one might expect it to project a greater shift of the SH westerly jet under global warming forcing if the SH summer westerly jet by any degree conforms to the fluctuation dissipation theorem. Figures 4a and 4b show the positions of the surface westerly jet, as a function of time of the year, in ERA40 (black), AMIP simulation with T159 (blue solid in 4a) and T1279 (green solid in 4b) resolutions and the corresponding time-slice experiments (dashed). Both resolutions show similar seasonality in the projected poleward shift of the westerly jet, with a relatively larger shift during SH summer than winter. The Welch’s t-test is used to assess whether the shifts between the time-slice and AMIP runs are significant. The result suggests that in both resolutions the shift in the surface westerly jet is significant at the
5\% confidence level throughout the year, with the summer and spring seasons more significant than others (Fig. 4c). Additionally, it may not just be fortuitous that the T1279 time-slice run projects a greater shift than the corresponding T159 run during mid-summer when the SAM is more persistent in the T1279 than the T159 AMIP simulations.

It is of interest to note that increasing the horizontal resolution 8-fold produces no appreciable shift in the mean position of the surface westerly wind, but instead enhances the SAM persistence, in contrast to the sensitivity found with most of the climate models that the SH westerly jet in the higher resolution models tends to be less equatorward biased, and less persistent in its leading mode of variability, and responds in smaller magnitude to a same external forcing [Gerber et al., 2008; Kidston and Gerber, 2010; Barnes et al. 2010].

4. Concluding remarks

We assessed the main spatial and temporal characteristics of the annular modes and the associated downward stratosphere-to-troposphere influence in two sets of simulations using the ECMWF IFS model at T159 and T1279 resolutions, respectively. In general, the high resolution version of the IFS model show modest improvement relative to the modest resolution and typical climate models in simulating the main characteristics of the AMs, including the timing of the enhanced variability and persistence of the AMs, the marked asymmetry in the seasonality between the Northern and Southern hemispheres, and the stratosphere-troposphere coupling during the active seasons. By comparing the seasonal structure of the AM variance in the stratosphere with the seasonality of the e-folding time of the AM index, it can be inferred that the
stratospheric variability can exert notable impacts on the time scale of the tropospheric AMs. In agreement with Gerber et al. [2010], our analysis also showed that at a certain time of the season the lower stratosphere is a better predictor for the phase of the AM events than the lower troposphere. In particular, the predictability stemming from the spring stratospheric condition in the SH is replicated in the higher resolution model. In general, for most metrics examined, the high-resolution version of the IFS performs comparatively better than the moderate resolution.

A note of caution should be added that some of the metrics (such as the time scale) examined here are quite sensitive to the choice of parameters and time period used in the calculation [e.g., Simpson et al. 2011] and statistical significance test for the improvement is not readily available. To gain some confidence in the findings above, we repeated the same analysis for the 13-month hindcast simulations. A qualitatively similar delay is found in the seasonal evolution of the tropospheric NAM variance, time scale, and potential predictability in the T159 simulation and the T1279 simulation tends to alleviate the bias toward delayed variability (see Auxiliary Figs. A2 and A3). Given the complexity of the processes involved in determining the temporal characteristics of the AMs, it remains elusive to understand why simply increasing the horizontal resolution can help place the peak of the AM variability and persistence at the right time, a topic beyond the scope of this investigation.

We can only speculate on the possible reason for the improvements in the T1279 runs as follows. The bi-harmonic diffusion used in IFS, which is scale selective, dissipates severely the high wave number range of the model-resolved power spectrum so as to distort the energy and enstrophy cascades at these scales. Indeed, significant
difference was detected in the probability distributions of the finite-amplitude wave activity (personal communication, Abraham Solomon) and extratropical cyclones (Jung et al. 2011) between the T159 and T1279 simulations. The misrepresentation of the fine features of the potential vorticity filaments associated with these extreme events in T159 might result in some adverse rectification effect on the temporal characteristics of the AMs. All in all, the 8-fold increase in the horizontal resolution can indeed bring about appreciable benefits.
References

Kinter III, J. L. et al. (2013), Revolutionizing climate modeling-Project Athena: a multi-

Son, S.-W., et al. (2008), The impact of stratospheric ozone recovery on the Southern

Figure Captions

Figure 1 The standard deviation of the NAM and SAM indices as a function of season and pressure for the ERA40 reanalysis (top) and the IFS AMIP simulations at T159 (middle) and T1279 (bottom) resolutions. The hatching in the bottom panels indicates the areas where the difference of the standard deviation from the T159 case is significant at 10% confidence level based on F test.

Figure 2 The e-folding time (days) of the NAM and SAM indices as a function of season and pressure for ERA40 (top) and IFS AMIP simulations at T159 (middle) and T1279 (bottom) resolutions. The hatching in the bottom panels indicates the areas where the difference of the AM time scale between the two resolutions is greater than the uncertainty of the time scale due to one standard deviation of the autocorrelation function of the AM index estimated following Gerber et al. (2008).

Figure 3 Similar to Figure 3, but for the fraction of variance of the 31 day mean 850hpa annular mode index, lagged by 10 days, that is linearly correlated with the instantaneous annular mode index as a function of season and pressure. Note that the observed estimate of the potential predictability is based on the NCEP-DOE reanalysis using data between 1979 through 2008. The hatching in the bottom panels indicates the areas where the increase of the explained variance relative to the T159 case is significant at 10% confidence level.
Figure 4 The upper two panels show the mean locations of the surface westerly wind maximum in the SH from the AMIP (solid) and time-slice (dashed) simulations by the IFS at T159 (upper) and T1279 (middle) resolutions, together with the ERA40 reanalysis (black). The bottom panel shows the degrees of shift in the surface westerly winds in the time-slice simulations with T159 (blue) and T1279 (green) resolutions, respectively. The shading indicates the 95% confidence interval based on Welch’s t-test.
(a) NAM standard deviation (ERA40)
(b) NAM standard deviation (T159)
(c) NAM standard deviation (T1279)
(d) SAM standard deviation (ERA40)
(e) SAM standard deviation (T159)
(f) SAM standard deviation (T1279)